

MONTHLY WATER QUALITY
ASSESSMENT REPORT

AUGUST 2022

Compiled by Aquatico Scientific

Prepared by: Aquatico Scientific

P.O. Box 905008 Garsfontein 0042

Tel/Fax: (012) 450 3800

Email: dawid@aquatico.co.za

Lafarge Industries

Monthly Water Quality Assessment Report

August 2022

Report Number: LI/MR8/2022/DS

Copyright reserved

No part of this document may be produced in any manner without full acknowledgement of the source

This report should be cited as:

Lafarge Industries Monthly Water Quality Assessment Report, August 2022

Table of Contents

1.	INTF	RODUCTION	1
2.	MAT	TERIALS AND METHODS	4
2	2.1.	Laboratory Analysis	5
3.	SITE	BACKGROUND AND MONITORING AREA	5
3	3.1.	Water monitoring localities sampling register	7
4.	WAT	FER QUALITY RESULTS	8
4	4.1.	Potable Water	8
	4.1.1	Potable water quality results discussion	9
4	4.2.	Waste Water (Effluent)	12
4	4.3.	Process Water	13
	4.3.1	Process water quality results discussion	13
4	4.4.	Service water (Wash Bay)	16
	4.4.1	Wash bay water quality results discussion	16
4	4.5.	Surface water (Tswana Lime and Townlands Pit)	17
	4.5.1	Pit water quality results discussion	17
5.	CON	NCLUSION	18
6.	REC	COMMENDATIONS	19
7.	REF	ERENCES	20
Li	st of	Figures	
Fig	jure 1:	Map of the Water Monitoring localities at Lafarge Industries	6
Li	st of	Tables	
		Structure of the classification system describing the effects of the different class	
		various domestic uses of water (Quality of Domestic Water Supplies, Vol. 1:	
	,	Groundwater Monitoring.	
		Potable Water Monitoring.	
		Monthly Surface and Process water Monitoring.	
		Monthly Water Sampling Register for August 2022.	
		Potable water quality data for the monthly monitoring localities	
		Process water quality data for the monthly monitoring locality	
		Service water quality data for the monthly monitoring locality	
		: Pit water quality data for the monthly monitoring locality	

LAFARGE INDUSTRIES
1 MANANA ROAD
INDUSTRIAL SITE
LICHTENBURG
2740

ATTENTION: UNEYSA TALJARD

leaders in enuironmental monitoring

address: 89 Regency drive, R21 Corporate Park, Centurion postal: P.O. Box 905008, Garsfontein, 0042 web: www.aquatico.co.za office: 012 450 3800 • fax: 012 450 3851

AUGUST 2022

WATER QUALITY ASSESSMENT REPORT LAFARGE INDUSTRIES AUGUST 2022

1. INTRODUCTION

Aquatico was commissioned by Lafarge Industries to sample, analyse and evaluate the physical, chemical and bacteriological quality of drinking (monthly), surface (monthly) and groundwater (bi-annual) localities.

Drinking water quality will be compared against the SANS 241:2015 drinking water standards (SABS, 2015) and the Quality of Domestic water supplies (WRC, 1998) in Table 1. The highest exceedance in each locality will determine the class of that locality.

The water is classed according to the following colour codes:

- Water testing within the Blue or Green colour class may be used without reservation and is considered safe for all users.
- Water testing within the Yellow colour class is generally regarded as safe, however sensitive users should be identified and warned to take personal consumption precautions.
- Water testing within the Red colour class can be used as a short-term emergency supply, approximately seven days only, when other sources are unavailable.
- When water tests within the Purple colour class the public must be warned not to use the water, or to use emergency home treatment where possible. If this is not possible, alternative water supplies must be considered and made available.

Table 1: Structure of the classification system describing the effects of the different classes of water on the various domestic uses of water (Quality of Domestic Water Supplies, Vol. 1: Assessment Guide).

CLASS / COLOUR	DESCRIPTION	EFFECTS
		Drinking health: No effects, suitable for many generations
		Drinking aesthetic: Water is pleasing
Class 0 (Blue)	Ideal water quality	Food preparation: No effects
		Bathing: No effects
		Laundry: No effects
		Drinking health : Suitable for lifetime use. Rare instances of sub- clinical effects
Class 4 (Creen)	Cood water guality	Drinking aesthetic: Some aesthetic effects may be present
Class 1 (Green)	Good water quality	Food preparation: Suitable for lifetime use
		Bathing: Minor effects on bathing or on bath fixtures
		Laundry: Minor effects on laundry or on fixtures
		Drinking health: May be used without health effects by majority of
	Marginal water quality	individuals of all ages, but may cause effects in some individuals in
		sensitive groups. Some effects possible after lifetime use.
Class 2 (Yellow)		Drinking aesthetic: Poor taste and appearance are noticeable
Class 2 (Tellow)		Food preparation: May be used without health or aesthetic effects
		by the majority of individuals.
		Bathing: Slight effects on bathing or on bath fixtures
		Laundry: Slight effects on laundry or on fixtures
		Drinking health : Poses a risk of chronic health effects, especially in
		babies, children and the elderly
	Poor water quality	Drinking aesthetic : Bad taste and appearance may lead to
Class 3 (Red)		rejection of water
,		Food preparation: Poses a risk of chronic health effects, especially
		in babies, children and the elderly
		Bathing: Significant effects on bathing or on bath fixtures
		Laundry: Significant effects on laundry or on fixtures
		Drinking health: Severe acute health effects, even with short-term
		use
		Drinking aesthetic : Taste and appearance will lead to rejection of
Class 4 (Purple)	Unacceptable	Water
	water quality	Food preparation : Severe acute health effects, even with short-term use
		Bathing: Serious effects on bathing or on bath fixtures
		Laundry: Serious effects on laundry or on fixtures
		Launury. Genous enects on launury or on lixtures

Groundwater will be compared against the SANS 241:2015 drinking water standards (SABS, 2015) and for comparative purposes against the Department of Water Affairs and Forestry, 1996, South African Water Quality Guidelines (SAWQG) (second edition). Volume 4: Agricultural Use: Irrigation.

Waste water will be compared against the Department of Water Affairs General Authorisations in terms of Section 39 of the National Water Act, 1998 (Act NO. 36 of 1998) for disposing of waste water in a manner which may detrimentally impact a water source.

Process water will be compared against the Department of Water Affairs and Forestry (DWAF), 1996. South African Water Quality Guidelines (SAWQG) (second edition), Volume 3: Industrial Use and the Department of Water Affairs General Authorisation Limits.

Monitoring localities that form part of this study are listed in Table 2 to Table 5, which also indicates sampling frequency, locality abbreviations and parameters analysed.

Table 2: Groundwater Monitoring.

Locality	Description	Latitude	Longitude	Sampling Frequency			
	Bore	hole					
Borehole P1	Monitoring Borehole	S26.12980	E26.18588	Bi-Annual			
Borehole P2	Monitoring Borehole	S26.13011	E26.18887	Bi-Annual			
Borehole P3	Monitoring Borehole	S26.12984	E26.18585	Bi-Annual			
Borehole T1	Monitoring Borehole	S26.11841	E26.16777	Bi-Annual			
Borehole T2	Monitoring Borehole	S26.11772	E26.16737	Bi-Annual			
Borehole T3	Monitoring Borehole	S26.11892	E26.18443	Bi-Annual			
Borehole LBH3	Monitoring Borehole	S26.12982	E26.18585	Bi-Annual			
Borehole LQBH4	Monitoring Borehole	S26.07275	E25.80018	Bi-Annual			
Borehole LQBH5	Monitoring Borehole	S26.07964	E25.80196	Bi-Annual			
Borehole LQBH8	Monitoring Borehole	S26.07662	E25.78401	Bi-Annual			
Borehole LQBH9	Monitoring Borehole	S26.07434	E25.79851	Bi-Annual			
Parameters							
pH, EC, Ca, Mg, Na, K, Total Alkalinity, F, Cl, NH ₄ (N), NO ₃ (N), PO ₄ , SO ₄ , Al, Fe, Mn, Groundwater level depth							
Ba, As, Co, Cr, Ni, Pb, Se, Sr, V, Zn, Mn, Cu, Ga, Ge, Rb, Y, Zr, Sn, W, Bi, Th, U, Hg							

Table 3: Potable Water Monitoring.

Locality	Locality Description		Longitude	Sampling Frequency					
Drinking water									
Ants Hill	Drinking water: Ants Hill	S26.13272	E26.18432	Monthly					
Tank	Drinking Water Tank	S26.13628	E26.18021	Monthly					
Village Recreation Club	Drinking water: Village Recreation Club	S26.14033	E26.17870	Monthly					
Tswana Quarry Kitchen Tap	Tswana Quarry Kitchen Tap	S26.07832	E25.80015	Monthly					
Lovedale Quarry DW	Lovedale Quarry DW Drinking water: Lovedale Quarry S26.16075 E26.12803								
	Bi-Annual								
pH, EC, Cl, Ca, SO ₄ , t coliforms, TVC, TDS, To	Monthly								

Table 4: Monthly Surface and Process water Monitoring.

Locality	Latitude	Longitude	Sampling Frequency						
Effluent									
WWTW	Final Effluent	S26.14105	E26.18688	Monthly					
WWTW Feed	Feed sample to the clarifier	S26.186649	E26.14125	Monthly					
WWTW Raw	Raw Influent	S26.186649	E26.14125	Monthly					
	Paran	neters							
pH, EC, TDS, TSS, COD,	Ca, Mg, Na, F, Cl, NH ₄ (N), NO ₃ (N), Some Faecal coliform, Total viable co		li, Total coliform,	Monthly					
	Dam								
Tswana Lime Pit	Tswana Lime Pit Tswana Lime Pit at mining site S26.07827 E25.80047								
Zinc Dam	Zinc Dam Plant Zinc Dam \$26.13038 \$26.185995								
Parameters									
pH, EC, TD	Monthly								

Table 4 continued: Monthly Surface and Process water Monitoring.

Locality	Description	Latitude	Longitude	Sampling Frequency				
Service Water								
Tswana Quarry WSWB	Tswana Quarry Workshop wash bay	S26.07851	E25.79965	Monthly				
	Parameters							
	Oil and grease (SOG), pH, TSS, T	DS, EC		Monthly				
Process water								
Process water		S26.13078	E26.18472	Monthly				
Parameters								
pH, EC, Ca, Mg, Na, I	Monthly							

2. MATERIALS AND METHODS

All fieldwork is conducted based on the protocols and specifications, and code of practice contained in the SABS ISO 5667-1-15. These international standards address all aspects from the program design, sampling methods, as well as sample preservation and many other aspects.

Aquatico developed a custom-made data input system in accordance with SABS ISO guidelines 5667-1 to 5667-3, to assist the field scientist in recording the physical and environmental information of the sampling locality. This information is needed to interpret water quality, especially if the water quality results obtained by the laboratory indicate sudden changes at a specific locality.

The field data typically include the following information:

- Location and name of the sample site
- Details of the sampling point i.e., surface/underground/tap water
- Method of collection
- Time of collection
- Name of collector

- Flow status or dam level
- Co-ordinates
- Photographic evidence
- Water level of boreholes
- Other data gathered at this point

All of the above information is recorded on a handheld PDA device deployed to the field complete with GPS, bar-code scanner, camera and database-linked MONLIMS software. The water quality database is electronically updated with this information when the field technician returns from the field trip.

2.1. Laboratory Analysis

Aquatico maintains a state-of-the-art water laboratory in Pretoria and is a SANAS Accredited Testing Laboratory, No T0685. This analytical laboratory has been operational since July 2006 and takes part in the SABS Inter-laboratory Testing Scheme as required in the Scope of Work.

3. SITE BACKGROUND AND MONITORING AREA

Between Coligny and Mafikeng on the R503, Lichtenburg is situated approximately 230 km west of Johannesburg on the main route to Mmabatho.

Lichtenburg falls within the region that receives between 500mm to 650mm rainfall per annum. The geology of the area comprises dolomite and chert belonging to the Chuniespoort Group (Savannah Environmental, 2018). The site overlies Precambrian (Proterozoic) dolomites and associated marine sedimentary rocks that are assigned to the Malmani Subgroup (Chuniespoort Group) within the Transvaal Supergroup. The Malmani Subgroup consists of a series of formations stromatolitic and oolitic carbonates (limestones and dolomites), cherts and black carbonaceous shales.

The potable, surface and groundwater monitoring localities sampled during the sampling period has been listed in Table 2-4 with a map of the water monitoring localities in Figure 1.

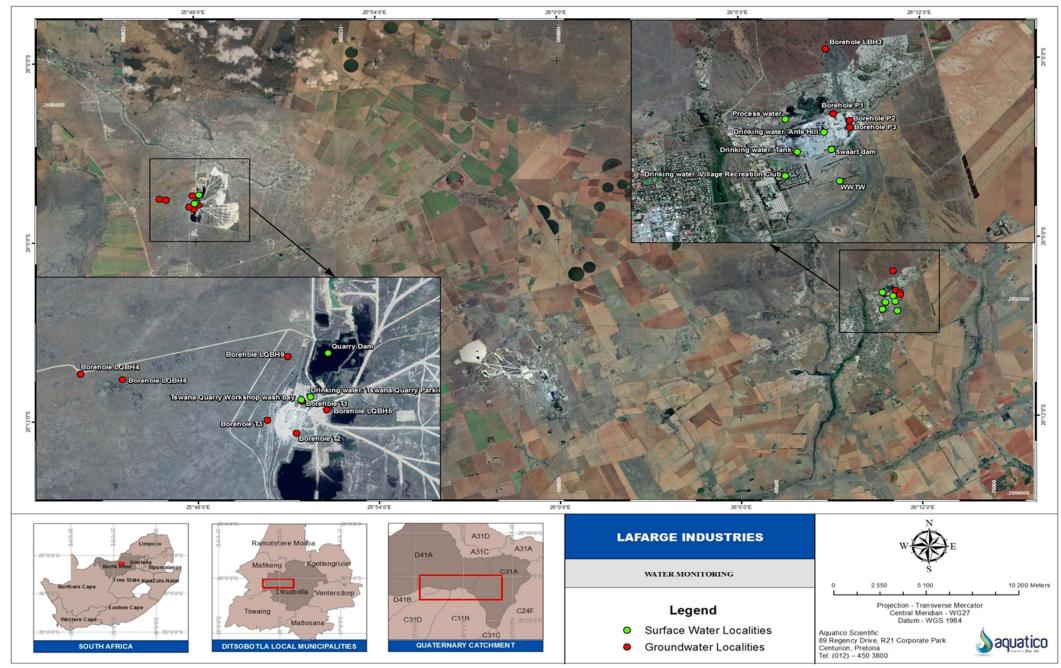


Figure 1: Map of the Water Monitoring localities at Lafarge Industries.

3.1. Water monitoring localities sampling register

A summary of the water samples collected during the monthly monitoring period is listed under Table 5. The sampling for August 2022 was conducted by Mr Sibusiso Simelane.

Table 5: Monthly Water Sampling Register for August 2022.

SAMPLING REGISTER: MONTHLY									
PROJECT NAME:			Lafarge Lichtenburg Plant						
MONTH:			August 2022						
SAMPLER NAME:			Sibusiso Sim	elane					
			tenburg Plant						
Locality	Description	Latitude	linates Longitude	Sample Time	Status	Flow/Level	Remarks	Lab no	
		Drinkir	ng water						
Ants Hill	Drinking water: Ants Hill	S26.13287	E26.18402	2022-08-09 13:56	Yes	-	CLEAR	162038	
Tank	Drinking Water Tank	S26.13629	E26.18023	2022-08-09 14:36	Yes	-	CLEAR	162041	
Village Recreation Club	Drinking water: Village Recreation Club	S26.14013	E26.17856	2022-08-09 12:31	Yes	-	CLEAR	162045	
Tswana Quarry Kitchen Tap	Drinking water: Tswana Quarry Kitchen Tap	S26.07840	E25.80024	2022-08-09 16:57	Yes	-	CLEAR	162044	
Lovedale Quarry DW	Lovedale Quarry Drinking Water	S26.16072	E26.12812	2022-08-09 10:41	Yes	-	CLEAR	162039	
		F	Pit						
Tswana Lime Pit	Tswana Lime Pit at mining area	S26.07406	E25.80059	2022-08-09 18:00	Yes	Medium	CLEAR	162043	
Townlands Pit		S26.12943	E26.18437	2022-08-09 14:55	Yes	Medium	SLIGHTLY TURBID	162042	
		Effl	uent						
WWTW Raw	Raw Influent	S26.14113	E26.18652	2022-08-09 12:55					
WWTW Feed	Feed sample to the clarifier	S26.14112	E26.18650	2022-08-09 12:54	Not sampled	PLANT OPERATING CLIENT AD TO SAMPLE		SED NOT	
WWTW Final	Final Effluent	S26.14115	E26.18652	2022-08-09 12:55					
Service water									
Tswana Quarry WSWB	Tswana Quarry Workshop wash bay	S26.07867	E25.79956	2022-08-09 17:01	Dry	-	DRY		
		Proces	ss water			1			
Process water		S26.13074	E26.18454	2022-08-09 14:09	Yes	-	CLEAR	162040	
Zinc Dam	Plant Zinc Dam	S26.13052	E26.18588	2022-08-09 14:06	Yes	Medium	TURBID	162046	

4. WATER QUALITY RESULTS

4.1. Potable Water

Table 6: Potable water quality data for the monthly monitoring localities.

		SANS 241-1:2015 Quality of Domestic		MONITORING LOCALITIES				
VARIABLE	UNITS	Drinking Water Standard (SABS, 2015)	Water Supplies: Drinking Class 1	Ants Hill	Tank	Village Recreation Club	Tswana Quarry Kitchen Tap	Lovedale Quarry DW
pH @ 25°C	pН	5.0/9.7	4.5/10.0	7.79	7.36	7.48	7.43	7.88
Electrical conductivity (EC) @ 25°C	mS/m	170	150	71.1	71.1	71.1	64.5	71.8
Total dissolved solids (TDS)	mg/l	1200	1000	440	433	439	358	422
Total alkalinity	mg CaCO ₃ /I	-	-	389	404	410	331	289
Total hardness	mg CaCO ₃ /I	-	300	412	402	406	314	384
Chloride (CI)	mg/l	300	200	11.5	9.48	12	17.3	21
Sulphate (SO ₄)	mg/l	500	400	35.8	26.4	21.6	2.85	43.5
Nitrate (NO ₃) as N	mg/l	11	10	2.87	2.97	3.09	2.07	9.5
Ammonium (NH ₄) as N	mg/I	1.5	-	0.083	0.081	0.127	0.107	0.088
Orthophosphate (PO ₄) as P	mg/l	-	-	0.477	<0.005	0.042	<0.005	<0.005
Fluoride (F)	mg/l	1.5	1	<0.263	<0.263	<0.263	<0.263	<0.263
Calcium (Ca)	mg/l	-	150	85.8	83.4	89	80.6	89.6
Magnesium (Mg)	mg/l	-	100	48	47	44.6	27.5	38.9
Sodium (Na)	mg/l	200	200	7.14	5.9	6.82	17.8	10.1
Potassium (K)	mg/l	-	50	1.23	1.2	1.13	0.509	0.628
Aluminium (AI)	mg/l	0.3	-	<0.002	<0.002	<0.002	<0.002	<0.002
Iron (Fe)	mg/l	0.3	1	<0.004	<0.004	<0.004	<0.004	<0.004
Manganese (Mn)	mg/l	0.1	0.4	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium (Cr)	mg/l	0.05	-	<0.003	<0.003	<0.003	<0.003	<0.003
Copper (Cu)	mg/l	2	1.3	0.017	<0.002	<0.002	<0.002	0.028
Nickel (Ni)	mg/l	0.07	-	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (Zn)	mg/l	5	5	0.014	<0.002	0.013	1.25	0.679
Cobalt (Co)	mg/l	-	-	<0.003	<0.003	<0.003	<0.003	<0.003
Cadmium (Cd)	mg/l	0.003	0.005	<0.002	<0.002	<0.002	<0.002	<0.002
Lead (Pb)	mg/l	0.01	-	<0.004	<0.004	<0.004	<0.004	<0.004
E. coli	CFU/100ml	0	1	0	0	0	0	0
Total coliform	CFU/100ml	10	10	0	0	0	0	0
Total Viable Count (TVC)	CFU/ml	1000	-	3	0	2	5128	5111

^{*}Value exceeds Assessment Set 1 / Value exceeds Assessment Set 2 and/or Assessment Set 1

4.1.1. Potable water quality results discussion

The potable water quality at Lafarge Industries can be described as neutral (pH: 6.0 - 8.5), non-saline (TDS: < 450 mg/I) and very hard (hardness: $300 - 600 \text{ mg CaCO}_3\text{/I}$), in terms of the recorded pH, TDS and Total Hardness values (Table 6).

- Of the sampled potable water localities, **Ants Hill**, **Tank** and **Village Recreation Club** complied with the SANS 241-1:2015 limits in terms of all the analysed variables in August 2022.
- Exceedances of the SANS 241-1:2015 limits were recorded in terms of **total viable counts** (**TVC**) at **Tswana Quarry Kitchen Tap** and **Lovedale Quarry DW**.
- No bacteriological content in terms of *E. coli* and total coliforms were detected at **any** of the sampled localities.
- Elevated **Total hardness**, exceeding the Quality of Domestic Water Supplies Good (Class 1) water quality was recorded at **all** of the potable water localities (Table 6).
- It should be noted that an elevated **nitrate** (**NO**₃) concentration still persists at **Lovedale Quarry DW**.

Ants Hill:

In terms of the classification system of the 'Quality of Domestic water supplies' (WRC, 1998) the quality is classified as follows:

Drinking:	Class 2 – Marginal	due to Total Hardness
Bathing:	Class 3 – Poor	due to Total Hardness
Washing:	Class 3 – Poor	due to Total Hardness
Food Preparation:	Class 3 – Poor	due to Total Hardness
Aesthetic:	Class 2 – Marginal	due to Total Hardness

Based on the assessment of variables analysed in comparison to 'SANS 241-1:2015 Drinking Water Standard (SABS, 2015)' and 'Quality of Domestic water supplies' (WRC, 1998), **Ants Hill** can be classified as **Marginal (Class 2)** water quality and is **Conditionally Fit** for use as potable water and domestic use due to **Total Hardness**.

Tank:

In terms of the classification system of the 'Quality of Domestic water supplies' (WRC, 1998) the quality is classified as follows:

Drinking:	Class 2 - Marginal	due to Total Hardness
Bathing:	Class 3 - Poor	due to Total Hardness
Washing:	Class 3 - Poor	due to Total Hardness
Food Preparation:	Class 3 - Poor	due to Total Hardness
Aesthetic:	Class 2 - Marginal	due to Total Hardness

Based on the assessment of variables analysed in comparison to 'SANS 241-1:2015 Drinking Water Standard (SABS, 2015)' and 'Quality of Domestic water supplies' (WRC,

1998), **Tank** can be classified as **Marginal (Class 2)** water quality and is **Conditionally Fit** for use as potable water and domestic use due to **Total Hardness**.

Village Recreational Club:

In terms of the classification system of the 'Quality of Domestic water supplies' (WRC, 1998) the quality is classified as follows:

Drinking: Class 2 - Marginal due to Total Hardness
Bathing: Class 3 - Poor due to Total Hardness
Washing: Class 3 - Poor due to Total Hardness
Food Preparation: Class 3 - Poor due to Total Hardness
Aesthetic: Class 2 - Marginal due to Total Hardness

Based on the assessment of variables analysed in comparison to 'SANS 241-1:2015 Drinking Water Standard (SABS, 2015)' and 'Quality of Domestic water supplies' (WRC, 1998), Village Recreational Club can be classified as Marginal (Class 2) water quality and is Conditionally Fit for use as potable water and domestic use due to Total Hardness.

Tswana Quarry Kitchen Tap:

In terms of the classification system of the 'Quality of Domestic water supplies' (WRC, 1998) the quality is classified as follows:

Drinking: Class 2 - Marginal due Total Hardness
Bathing: Class 3 - Poor due to Total Hardness
Washing: Class 3 - Poor due to Total Hardness
Food Preparation: Class 3 - Poor due to Total Hardness
Aesthetic: Class 2 - Marginal due to Total Hardness

Based on the assessment of variables analysed in comparison to 'SANS 241-1:2015 Drinking Water Standard (SABS, 2015)' and 'Quality of Domestic water supplies' (WRC, 1998), **Tswana Quarry Kitchen Tap** can be classified as **Marginal (Class 2)** water quality and is **Conditionally Fit** for use as potable water and domestic use due to **Total hardness** and **TVC**.

Lovedale Quarry DW:

In terms of the classification system of the 'Quality of Domestic water supplies' (WRC, 1998) the quality is classified as follows:

Drinking: Class 3 – Poor due to Nitrate

Bathing: Class 3 - Poor due to Total Hardness Washing: Class 3 - Poor due to Total Hardness

Food Preparation: Class 3 - Poor due to Nitrate and Total Hardness

Aesthetic: Class 2 - Poor due to Total Hardness

Based on the assessment of variables analysed in comparison to 'SANS 241-1:2015 Drinking Water Standard (SABS, 2015)' and 'Quality of Domestic water supplies' (WRC, 1998), **Lovedale Quarry DW** can be classified as **Marginal (Class 2)** water quality and is

Conditionally Fit for use as potable water and domestic use due to **Total hardness** and **TVC**.

Exceeding Variables:

Total Hardness:

The hardness of the water can cause very severe scaling of kettles and can cause a severely increase impairment of lathering. The hardness of the water could also have a chronic health effect in sensitive groups (Individuals with a history of kidney or gall-bladder stone and infants under 1 year of age). The hardness can also have an effect on taste.

Total Viable Count (TVC):

Total viable counts are used to indicate the general microbial quality of water. They are used to assess the efficiency of water treatment and disinfection processes, to test the integrity of distribution systems for after-growth and to determine the quality of water used in industrial processes. High total viable counts in treated water indicate inadequate treatment of water, post-treatment contamination or bacterial after-growth in the distribution system. Therefore, pathogenic micro-organisms bacteria and viruses could possibly be present in water and pose a health risk when this water is used for domestic purposes.

It should be noted that the main geology mined in this area consists of Dolomite and Limestone, with Ca and Mg being the major chemical components. Thus, high concentrations of Total Hardness are expected within the surrounding groundwater localities as Total Hardness is a representative of bicarbonate, Ca and Mg, which is some of the main by-products mined within the Lafarge area.

4.2. Waste Water (Effluent)

Table 7: Waste water quality data for the monthly monitoring locality.

		General	MONITORING LOCALITIES				
VARIABLE	UNITS	Authorisation Limit, Section 21f and h, 2013	WWTW Raw	WWTW Feed	WWTW Final		
pH @ 25°C	рН	5.5/9.5					
Electrical conductivity (EC) @ 25°C	mS/m	150					
Total Dissolved solids @ 180°C	mg/l	-					
Chloride (CI)	mg/l	-					
Sulphate (SO ₄)	mg/l	-					
Nitrate (NO ₃) as N	mg/l	15					
Ammonium (NH ₄) as N	mg/l	6					
Fluoride (F)	mg/l	1					
Calcium (Ca)	mg/l	-					
Magnesium (Mg)	mg/l	-					
Sodium (Na)	mg/l	-					
Potassium (K)	mg/l	-	NOT PUMPING - PLANT NOT OPERATIONAL				
Aluminium (AI)	mg/l	-					
Iron (Fe)	mg/l	0.3					
Manganese (Mn)	mg/l	0.1					
E. coli	CFU/100ml	1000					
Faecal coliform	CFU/100ml	1000					
Total coliform	CFU/100ml	-					
Total Viable Count (TVC)	CFU/ml	-					
Chemical oxygen demand (COD)	mg/l	75					
Total suspended solids (TSS)	mg/l	25					
Temperature	°C	-					
Total hardness	mg CaCO₃/I	-					

^{*}Value exceeds Assessment Set 1

^{*}N/R = Not requested

4.3. Process Water

Table 8: Process water quality data for the monthly monitoring locality.

		DWAF (1996)	General	MONITORING LOCALITIES		
VARIABLE			Authorisation Limit, Section 21f and h, 2013	Process water	Zinc Dam	
pH @ 25°C	рН	6.5/8.0	5.5/9.5	8.15	8.74	
Electrical conductivity (EC) @ 25°C	mS/m	30	150	79.3	891	
Chloride (CI)	mg/l	40		29.2	1914	
Sulphate (SO ₄)	mg/l	80	-	43.9	874	
Nitrate (NO ₃) as N	mg/l	-	15	0.49	0.197	
Ammonium (NH ₄) as N	mg/l	-	6	0.128	0.255	
Fluoride (F)	mg/l	-	1	<0.263	<0.263	
Calcium (Ca)	mg/l	-	-	82.2	59.2	
Magnesium (Mg)	mg/l	-	-	52.1	40.1	
Sodium (Na)	mg/l	-	-	16.1	1739	
Potassium (K)	mg/l	-	-	3.2	430	
Aluminium (Al)	mg/l	-	-	<0.002	<0.002	
Iron (Fe)	mg/l	0.2	0.3	<0.004	0.111	
Manganese (Mn)	mg/l	0.1	0.1	<0.001	0.123	

^{*}Value exceeds Assessment Set 1 / Value exceeds Assessment Set 2 and/or Assessment Set 1

4.3.1. Process water quality results discussion

Nearby quarry water (locality **Process water**) is pumped throughout the process system and utilised for the cooling processes at Lafarge industries. The **Zinc Dam** is utilised as a water storage facility.

Alkaline pH values (pH > 8.5) were recorded at locality **Zinc Dam**, while a neutral pH (pH 6.0 - 8.5) prevailed at **Process Water** during August 2022 (Table 8).

Exceedances of the SAWQG for Industrial Use at locality **Process Water** were recorded in terms of **pH** and **electrical conductivity** (**EC**), while **Zinc Dam** exceeded for the aforementioned variables as well as **chloride** (**CI**), **sulphate** (**SO**₄) and **manganese** (**Mn**) concentrations.

According to the DWAF, 1996 SAWQG for Industrial use; Category 2 Processes the following effects may be possible in terms of the variables (**pH**, **EC/TDS**, **CI** and **SO**₄) detected:

1.	Damage to equipment and structures	
2.	Interference with processes	
3.	Product quality	
4.	Complexity of waste handling	

Locality Process Water

- The effects of the pH value at locality **Process Water** that falls in the quality range of 8.0 to 10.0 include:
 - minor to moderate damage due to scaling or deposits;
 - mild effect on alkaline and neutral processes and major pH adjustment for highly acidic processes;
 - potential for product impairment due to scaling of deposits mild to moderate;
 and
 - pH adjustment may be required before disposal of waste.
- The effects of the EC value at locality **Process Water** that falls in the quality range of 50 to 120 include:
 - 1. moderate damage to equipment and structures through corrosion and scaling and fouling possible;
 - 2. moderate to significant interference with processes possible;
 - 3. moderate impairment of product quality due to precipitation; and
 - 4. no problems except for disposal of highly saline effluents from moderate frequency regeneration of demineralisation plant.
- None of the analysed variables at locality Process Water exceeded the General Authorisation Limits during August 2022 (Table 8).

Locality Zinc Dam

- The effects of the pH value at locality **Zinc Dam** that falls in the quality range of 8.0 to 10.0 include:
 - minor to moderate damage due to scaling or deposits;
 - mild effect on alkaline and neutral processes and major pH adjustment for highly acidic processes;
 - potential for product impairment due to scaling of deposits mild to moderate;
 and
 - pH adjustment may be required before disposal of waste.
- The effects of the EC value at locality **Zinc Dam** that falls in the quality range of > 120 include:
 - significant to major damage to equipment and structures through corrosion and scaling and fouling;
 - significant to major interference with processes expected;

- significant to major impairment of product quality expected; and
- major reduction in salt content required to comply with local or General Standards for discharges.
- The effects of the CI concentration at locality **Zinc Dam** that exceeded the range of concentration > 200 include:
 - moderate to major damage due to corrosion particularly if pH is low and temperature elevated;
 - significant to major interference with processes expected;
 - moderate to major impairment of product quality expected; and
 - major reduction in chloride content may be required to comply with local or General Standards for discharges.
- The effects of the SO₄ concentration at locality **Zinc Dam** that exceeded the range of concentration > 250 include:
 - moderate to major damage as a result of corrosion, scaling or concrete degradation;
 - moderate to major interference with processes expected;
 - significant to major impairment of product quality expected through precipitation; and
 - no problems, except for disposal of highly saline effluent from moderate to high frequency regeneration of demineralisation plant.
- The effects of the Mn concentration at locality **Zinc Dam** that falls in the quality range of 0.1 0.5 include:
 - minor to moderate damage due to precipitation of manganese compound;
 - negligible to minor interference with processes expected;
 - negligible to moderate impairment of product quality; and
 - treatment may be required to reduce manganese concentrations to conform with local and General Standards for discharges.

EC and **Mn** of the analysed variables at locality **Zinc Dam** also exceeded the General Authorisation Limits during August 2022 (Table 8). It should be noted that significantly high **EC**, **CI** and **SO**₄ concentrations prevail at locality **Zinc Dam** and should not be released into the receiving environment. The possible reason for the high concentrations of the variables mentioned above is the concentration effect taking place in the dam due to evaporation.

4.4. Service water (Wash Bay)

Table 9: Service water quality data for the monthly monitoring locality.

	UNITS	General Authorisation Limit, Section 21f and h, 2013	MONITORING LOCALITIES
VARIABLE			Tswana Quarry WSWB
pH @ 25°C	рН	5.5/9.5	
Electrical conductivity (EC) @ 25°C	mS/m	150	
Total Dissolved solids @ 180°C	mg/l	-	DRY
Total suspended solids (TSS)	mg/l	25	
Oil and grease (SOG)	mg/l	2.5	

4.4.1. Wash bay water quality results discussion

The **Tswana Quarry WSWB** sample are collected at the Tswana Quarry truck wash bay (mechanical workshop) after the oil separator. Water from the truck wash bay is pumped through the oil separator for re-use or disposal.

No water sampled could be taken at **Tswana Quarry WSWB** during August 2022 due to dry conditions.

4.5. Surface water (Tswana Lime and Townlands Pit)

Table 10: Pit water quality data for the monthly monitoring locality.

		General Authorisation	SAWQG Volume 5, Agricultural	MONITORING LOCALITIES	
VARIABLE	UNITS	Limit, Section 21f and h, 2013	Use, Livestock Watering, Cattle	Tswana Lime Pit	Townlands Pit
pH @ 25°C	рН	5.5/9.5	-	8.49	8.18
Electrical conductivity (EC) @ 25°C	mS/m	150	-	49	82.8
Total Dissolved solids @ 180°C	mg/l	-	1000	302	506
Total hardness	mg CaCO₃/I	-	-	210	427
Chloride (CI)	mg/l	-	1500	85.8	37
Sulphate (SO ₄)	mg/l	-	1000	4.59	39.8
Nitrate (NO ₃) as N	mg/l	15	22.6	0.283	0.411
Ammonium (NH ₄) as N	mg/l	6		0.117	0.137
Fluoride (F)	mg/l	1		<0.263	<0.263
Calcium (Ca)	mg/l	-	1000	43.6	83.3
Magnesium (Mg)	mg/l	-	500	24.7	53.2
Sodium (Na)	mg/l	-	2000	17.1	22.6
Potassium (K)	mg/l	-	-	1.85	4.82
Aluminium (AI)	mg/l	-	5	<0.002	<0.002
Iron (Fe)	mg/l	0.3	10	<0.004	<0.004
Manganese (Mn)	mg/l	0.1	10	0.008	<0.001
Chromium (Cr)	mg/l	-	-	<0.003	<0.003
Copper (Cu)	mg/l	0.01	0.5	<0.002	<0.002
Nickel (Ni)	mg/l	-		<0.002	<0.002
Zinc (Zn)	mg/l	0.1	20	<0.002	<0.002
Cobalt (Co)	mg/l	-		<0.003	<0.003
Cadmium (Cd)	mg/l	0.005	0.01	<0.002	<0.002
Lead (Pb)	mg/l	0.01	0.1	<0.004	<0.004
Total suspended solids (TSS)	mg/l	25	-	<4.5	13

^{*}Value exceeds Assessment Set 1

4.5.1. Pit water quality results discussion

One additional pit locality (**Townlands Pit**) was added to the monitoring programme in February 2022. The water quality sampled at **Tswana Lime Pit** and **Townlands Pit** were compared against the General Authorisation limit and the SAWQG for Livestock Watering (Table 10).

The water at **Tswana Lime Pit** and **Townlands Pit** can be described as neutral, non-saline (**Tswana Lime Pit**) to saline and hard (**Tswana Lime Pit**) to very hard (Table 10). **All** of the analysed variables complied with the General Authorisation limit at Tswana Lime Pit and Townlands Pit during August 2022. The compliant ("unaffected") water quality might be as a result of the influx of fresh rain water that causes a dilution effect.

No exceedances in terms of any analysed variables compared to the SAWQG for Livestock Watering limits.

5. CONCLUSION

A monitoring report specific for Lafarge industries was compiled by Aquatico to highlight and evaluate data according to applicable guidelines. Selected monitoring localities can be summarised as follows:

DRINKING WATER MONITORING

Physical, Chemical and Bacteriological Quality:

- In terms of physical quality, the representative drinking water localities can be described as neutral, non-saline and very hard.
- ➤ All of the analysed variables at localities Ants Hill, Tank and Village Recreation Club complied with the SANS 241-1:2015 limits in August 2022.
- > TVC exceeded the SANS 241-1:2015 limit at Tswana Quarry Kitchen Tap and Lovedale Quarry DW.
- ➤ No *E. coli* and no total coliforms was detected at any of the sampled potable water localities.
- Localities Ants Hill, Tank, Village Recreation Club, Tswana Quarry Kitchen Tap and Lovedale Quarry DW can be classified as Marginal (Class 2) water quality, due to the Total Hardness. The water at these localities is Conditionally Fit for use as potable water and domestic use.
- ➤ Elevated total hardness is expected in the groundwater as the nature of the geology in this area mainly consist of dolomite and limestone, with Ca and Mg being the major chemical components.
- ➤ It should also be noted that an elevated NO₃ concentrations persist at Lovedale Quarry DW.

WASTE WATER MONITORING

The waste water plant was not operational during sampling in August 2022.

PROCESS WATER MONITORING

- ➤ Exceedances observed in terms of pH and EC at locality Process water, while pH, EC, Cl, SO₄ and Mn exceeded at Zinc Dam when measured against the SAWQG for Industrial Use.
- Scaling, corrosion and salt depositions may occur from water at Process Water.
- ➤ Significant scaling, corrosion and salt depositions expected from water at Zinc Dam due to the extremely high EC, Cl and SO₄ recorded.
- > EC and Mn exceeded the General Authorisation Limit at Zinc Dam

SURFACE (PIT) WATER MONITORING

- > All of the analysed variables complied with the General Authorisation Limit at Townlands Pit and Tswana Lime Pit.
- > The good water quality might be attributed to the influx of fresh rain water.

6. RECOMMENDATIONS

- Monthly drinking water quality monitoring should continue as scheduled.
- It is advised to maintain a free chlorine (Cl₂) residual in the range of 0.2 mg/l to 0.5 mg/l to ensure disinfection in the distribution system.

7. REFERENCES

- DWA [Department of Water Affairs] (2013) Revision of General Authorizations in terms of Section 39 of the National Water Act, 1998 (Act No. 36 of 1998). *Government Gazette* 36820. 6 September (Government Notice no. 665).
- Department of Water Affairs and Forestry (1996). South African Water Quality Guidelines Volume 5 Agricultural Use: Livestock Watering. 2nd Ed. Issue 1. Department of Water Affairs and Forestry. Pretoria.
- DWAF [Department of Water Affairs and Forestry] (1996). South African Water Quality Guidelines Volume 3 Industrial Use. 2nd Ed. Issue 1. Department of Water Affairs and Forestry. Pretoria.
- WRC [Water Research Commission], DWAF [Department of Water Affairs and Forestry], and DOH [Department of Health] (1998). Quality of Domestic Water Supplies. Volume 1: Assessment Guide. (2nd Edition). WRC Report no. TT 101/98. Pretoria.
- Savannah Environmental (2018) Scoping Report for Lichtenburg 1, a PV facility and associated infrastructure, proposed on a site near Lichtenburg, in the North West Province.
- SABS [South African Bureau for Standards] SANS 241-1:2015 South African National Standard for Drinking Water Part 1: Microbiological, physical, aesthetic and chemical determinants. SABS Standards Division. Pretoria.

LAFARGE INDUSTRIES

APPENDIX A

PHOTOGRAPHIC MONITORING CATALOGUE

S26.07840 E25.80024

2022-08-09 16:57

Sibusiso Simelane

Drinking water: Tswana Quarry Kitchen Tap

Tswana Quarry Kitchen Tap

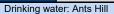
LAFARGE LICHTENBURG PLANT - PHOTOGRAPHIC MONITORING CATALOGUE

Tank

S26.13629 E26.18023

2022-08-09 14:36

Sibusiso Simelane


Locality

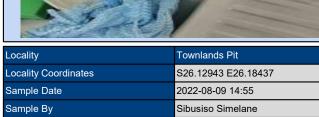
Locality Coordinates

Sample Date

Sample By

Locality	Ants Hill
Locality Coordinates	S26.13287 E26.18402
Sample Date	2022-08-09 13:56
Sample By	Sibusiso Simelane

Drinking Water Tank		
	and the second s	
PER	Ton A.	
	The state of the s	
	307	

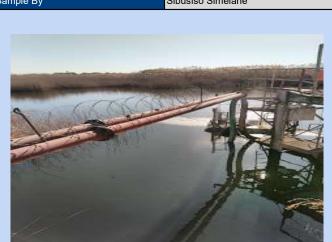

	_
and the state of	
(Company)	
200	
1000	
ALC: UNITED BY	
1000	
State of the last	
1	Man
THE REAL PROPERTY.	- 1

Locality

Locality Coordinates

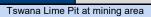
Sample Date

Sample By


Locality	Village Recreation Club
Locality Coordinates	S26.14013 E26.17856
Sample Date	2022-08-09 12:31
Sample By	Sibusiso Simelane

Drinking water: Village Recreation Club

Locality	Lovedale Quarry DW
Locality Coordinates	S26.16072 E26.12812
Sample Date	2022-08-09 10:41
Sample By	Sibusiso Simelane
Lovedale Quarry	/ Drinking Water



LAFARGE LICHTENBURG PLANT - PHOTOGRAPHIC MONITORING CATALOGUE

Locality	Tswana Lime Pit
Locality Coordinates	S26.07406 E25.80059
Sample Date	2022-08-09 18:00
Sample By	Sibusiso Simelane

Paw I	nfluent
Sample By	Sibusiso Simelane
Sample Date	2022-08-09 12:55
Locality Coordinates	S26.14113 E26.18652
Locality	WWTW Raw

Locality	WWTW Feed
Locality Coordinates	S26.14112 E26.18650
Sample Date	2022-08-09 12:54
Sample By	Sibusiso Simelane

Locality	WWTW Final
Locality Coordinates	S26.14115 E26.18652
Sample Date	2022-08-09 12:55
Sample By	Sibusiso Simelane

	Locality	Process water
	Locality Coordinates	S26.13074 E26.18454
l	Sample Date	2022-08-09 14:09
l	Sample By	Sibusiso Simelane

Locality	Zinc Dam
Locality Coordinates	S26.13052 E26.18588
Sample Date	2022-08-09 14:06
Sample By	Sibusiso Simelane

LAFARGE INDUSTRIES

APPENDIX B

TEST REPORT

18 August 2022

Test Report Page 1 of 4

Client: Lafarge Industries South Africa Date of report:

Address: 1 Manana Road, Industrial Site, Lichtenburg, 2740 Date accepted:

Address:1 Manana Road, Industrial Site, Lichtenburg, 2740Date accepted:11 August 2022Report no:132962Date completed:18 August 2022

Project: Lafarge Lichtenburg Plant **Date received:** 11 August 2022

Lab no:			162038	162039	162040	162041	162042	162043	162044
Date sampled:			09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22
Aquatico sampled:			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description: Analyses		Ants Hill	Lovedale Quarry DW	Process water	Tank	Townlands Pit	Tswana Lime Pit	Tswana Quarry Kitchen Tap	
	Unit	Method							
A pH @ 25°C	рН	ALM 20	7.79	7.88	8.15	7.36	8.18	8.49	7.43
A Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	71.1	71.8	79.3	71.1	82.8	49.0	64.5
A Total Dissolved solids @ 180°C	mg/l	ALM 24	NR	NR	NR	NR	506	302	NR
A Total alkalinity	mg CaCO3/I	ALM 01	389	289	406	404	NR	NR	331
A Chloride (CI)	mg/l	ALM 02	11.5	21.0	29.2	9.48	37.0	85.8	17.3
A Sulphate (SO4)	mg/l	ALM 03	35.8	43.5	43.9	26.4	39.8	4.59	2.85
A Nitrate (NO3) as N	mg/l	ALM 06	2.87	9.50	0.490	2.97	0.411	0.283	2.07
A Nitrite (NO ₂) as N	mg/l	ALM 07	NR	NR	0.096	NR	NR	NR	NR
A Ammonium (NH ₄) as N	mg/l	ALM 05	0.083	0.088	0.128	0.081	0.137	0.117	0.107
A Orthophosphate (PO4) as P	mg/l	ALM 04	0.477	<0.005	<0.005	<0.005	NR	NR	<0.005
A Fluoride (F)	mg/l	ALM 08	<0.263	<0.263	<0.263	<0.263	<0.263	<0.263	<0.263
A Calcium (Ca)	mg/l	ALM 30	85.8	89.6	82.2	83.4	83.3	43.6	80.6
A Magnesium (Mg)	mg/l	ALM 30	48.0	38.9	52.1	47.0	53.2	24.7	27.5
A Sodium (Na)	mg/l	ALM 30	7.14	10.1	16.1	5.90	22.6	17.1	17.8
A Potassium (K)	mg/l	ALM 30	1.23	0.628	3.20	1.20	4.82	1.85	0.509
A Aluminium (Al)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Iron (Fe)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
A Manganese (Mn)	mg/l	ALM 31	<0.001	<0.001	<0.001	<0.001	<0.001	0.008	<0.001
A Chromium (Cr)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
A Copper (Cu)	mg/l	ALM 31	0.017	0.028	<0.002	<0.002	<0.002	<0.002	<0.002
A Nickel (Ni)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Zinc (Zn)	mg/l	ALM 31	0.014	0.679	<0.002	<0.002	<0.002	<0.002	1.25
A Cobalt (Co)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
A Cadmium (Cd)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Lead (Pb)	mg/l	ALM 31	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
A E.coli	CFU/100ml	ALM 40	<1	<1	NR	<1	NR	NR	<1
A Total coliform	CFU/100ml	ALM 40	<1	<1	NR	<1	NR	NR	<1
A TotalViableCount	CFU/ml	ALM 43	3	5111	NR	<1	NR	NR	5128

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report; Results relate only to the items sampled and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Test Report Page 2 of 4

Client: Lafarge Industries South Africa

1 Manana Road, Industrial Site, Lichtenburg, 2740

Report no: 132962

Address:

Project: Lafarge Lichtenburg Plant

Date of report: 18 August 2022
Date accepted: 11 August 2022

Date completed: 18 August 2022

Date received: 11 August 2022

Lab no:			162038	162039	162040	162041	162042	162043	162044
Date sampled:			09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22	09-Aug-22
Aquatico sampled:			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description: Analyses Unit Method		Ants Hill	Lovedale Quarry DW	Process water	Tank	Townlands Pit	Tswana Lime Pit	Tswana Quarry Kitchen Tap	
A Total hardness	mg CaCO3/I	ALM 26	412	384	420	402	427	210	314
A Total suspended solids (TSS)	mg/l	ALM 25	NR	NR	NR	NR	13	<4.5	NR
A Total oxidised nitrogen as N	mg/l	ALM 06	2.87	9.50	0.586	2.97	0.411	0.283	2.07

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report; Results relate only to the items sampled and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Date of report:

18 August 2022

Test Report Page 3 of 4

Client: Lafarge Industries South Africa

1 Manana Road, Industrial Site, Lichtenburg, 2740 Address:

Report no: 132962

Project: Lafarge Lichtenburg Plant Date accepted: 11 August 2022 Date completed: 18 August 2022 Date received: 11 August 2022

Lab no:	162045	162046		
Date sampled:	09-Aug-22	09-Aug-22		
Aquatico sampled:	Yes	Yes		
Sample type:	Water	Water		
Locality description: Analyses			Village Recreation Club	Zinc Dam
	Unit	Method		
A pH @ 25°C	рН	ALM 20	7.48	8.74
A Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	71.1	891
A Total Dissolved solids @ 180°C	mg/l	ALM 24	NR	NR
A Total alkalinity	mg CaCO3/I	ALM 01	410	1462
A Chloride (CI)	mg/l	ALM 02	12.0	1914
A Sulphate (SO4)	mg/l	ALM 03	21.6	874
A Nitrate (NO3) as N	mg/l	ALM 06	3.09	0.197
A Nitrite (NO ₂) as N	mg/l	ALM 07	NR	0.077
A Ammonium (NH ₄) as N	mg/l	ALM 05	0.127	0.255
A Orthophosphate (PO4) as P	mg/l	ALM 04	0.042	<0.005
A Fluoride (F)	mg/l	ALM 08	<0.263	<0.263
A Calcium (Ca)	mg/l	ALM 30	89.0	59.2
A Magnesium (Mg)	mg/l	ALM 30	44.6	40.1
A Sodium (Na)	mg/l	ALM 30	6.82	1739
A Potassium (K)	mg/l	ALM 30	1.13	430
A Aluminium (Al)	mg/l	ALM 31	<0.002	<0.002
A Iron (Fe)	mg/l	ALM 31	<0.004	0.111
A Manganese (Mn)	mg/l	ALM 31	<0.001	0.123
A Chromium (Cr)	mg/l	ALM 31	<0.003	0.015
A Copper (Cu)	mg/l	ALM 31	<0.002	<0.002
A Nickel (Ni)	mg/l	ALM 31	<0.002	0.632
A Zinc (Zn)	mg/l	ALM 31	0.013	<0.002
A Cobalt (Co)	mg/l	ALM 31	<0.003	0.010
A Cadmium (Cd)	mg/l	ALM 31	<0.002	<0.002
A Lead (Pb)	mg/l	ALM 31	<0.004	<0.004
A E.coli	CFU/100ml	ALM 40	<1	NR
A Total coliform	CFU/100ml	ALM 40	<1	NR
A TotalViableCount	CFU/ml	ALM 43	2	NR

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report; Results relate only to the items sampled and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Authenticated signature on first page

Date of report:

Date accepted:

Date received:

Date completed:

18 August 2022

11 August 2022

18 August 2022

11 August 2022

Test Report Page 4 of 4

Client: Lafarge Industries South Africa

1 Manana Road, Industrial Site, Lichtenburg, 2740 Address:

Report no: 132962

Project: Lafarge Lichtenburg Plant

Lab no:	162045	162046					
Date sampled:	09-Aug-22	09-Aug-22					
Aquatico sampled:	Yes	Yes					
Sample type:	Water	Water					
Locality description: Analyses	Village Recreation Club	Zinc Dam					
	Unit	Method					
A Total hardness	mg CaCO3/I	ALM 26	406	313			
A Total suspended solids (TSS)	mg/l	ALM 25	NR	NR			
A Total oxidised nitrogen as N	mg/l	ALM 06	3.09	0.274			

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report; Results relate only to the items sampled and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in this report are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Authenticated signature on first page